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Abstract

Tensors are a useful tool for representing multilink graphs, and tensor decom-
positions facilitate a type of link analysis that incorporates all link types simul-
taneously. An adjacency tensor is formed by stacking the adjacency matrix for
each link type to form a three-way array. The CANDECOMP/PARAFAC (CP)
tensor decomposition provides information about adjacency tensors of multi-
link graphs analogous to that produced for adjacency matrices of single-link
graphs using the singular value decomposition (SVD). The CP tensor decom-
position generates feature vectors that incorporate all linkages simultaneously
for each node in a multi-link graph. Feature vectors can be used to analyze
bibliometric data in a variety of ways, for example, to analyze five years of
publication data from journals published by the Society for Industrial and Ap-
plied Mathematics (SIAM). Experiments presented include analyzing a body
of work, distinguishing between papers written by different authors with the
same name, and predicting the journal in which a paper is published.
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7.1 Introduction
Multi-link graphs, i.e., graphs with multiple link types, are challenging to analyze, yet such
data are ubiquitous. For example, Adamic and Adar [2005] analyze a social network where
nodes are connected by organizational structure, i.e., each employee is connected to his
or her boss, and also by direct email communication. Social networks clearly have many
types of links—familial, communication (phone, email, etc.), organizational, geographical,
etc.

Our overarching goals are to analyze data with multiple link types and to derive
feature vectors for each individual node (or data object). As a motivating example, we
use journal publication data—specifically considering several of the many ways that two
papers may be linked. The analysis is applied to five years of journal publication data
from eleven journals and a set of conference proceedings published by the Society for
Industrial and Applied Mathematics (SIAM). The nodes represent published papers. Ex-
plicit, directed links exist whenever one paper cites another. Undirected similarity links
are derived based on title, abstract, keyword, and authorship. Historically, bibliometric
researchers have focused solely on citation analysis or text analysis, but not both simul-
taneously. Though this work focuses on the analysis of publication data, the techniques
are applicable to a wide range of tasks, such as higher-order web link graph analysis
[Kolda & Bader 2006, Kolda et al. 2005].

Link analysis typically focuses on a single link type. For example, both PageRank
[Brin & Page 1998] and HITS [Kleinberg 1999] consider the structure of the web and de-
compose the adjacency matrix of a graph representing the hyperlink structure. Instead of
decomposing an adjacency matrix that represents a single matrix, our approach is to de-
compose an adjacency tensor that represents multiple link types.

A tensor is a multidimensional, or N -way, array. For multiple linkages, a three-
way array can be used, where each two-dimensional frontal slice represents the adjacency
matrix for a single link type. If there are N nodes and K link types, then the data can be
represented as a three-way tensor of size N ×N ×K where the (i, j, k) entry is nonzero
if node i is connected to node j by link type k. In the example of Adamic and Adar
[2005] discussed above, there are two links types: organization connections versus email
communication connections. For bibliometric data, the five different link types mentioned
above correspond to (frontal) slices in the tensor; see Figure 7.1.

The CANDECOMP/PARAFAC (CP) tensor decomposition [Carroll & Chang 1970,
Harshman 1970] is a higher-order analog of the matrix singular value decomposition. The
CP decomposition applied to the adjacency tensor of a multi-link graph leads to the follow-
ing types of analysis.

• The CP decomposition reveals “communities” within the data and how they are
connected. For example, a particular factor may be connected primarily by title similarity
while another may depend mostly on citations.

• The CP decomposition also generates feature vectors for the nodes in the graph,
which can be compared directly to get a similarity score that combines the multiple linkage
types.

• The average of a set of feature vectors represents a body of work, e.g., by a given
author, and can be used to find the most similar papers in the larger collection.

• The feature vectors can be used for disambiguation. In this case, the feature vectors
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Frontal Slices X(:, :, k)

X(:, :, 5) = citation�

X(:, :, 4) = author similarity�

X(:, :, 3) = keyword similarity�

X(:, :, 2) = title similarity�

X(:, :, 1) = abstract similarity�

Figure 7.1. Tensor slices.
Slices of a third-order tensor representing a multi-link graph.

associated with the body of work for two or more authors indicate if they are the same
authors or not. For example, is H. SIMON the same as H. S. SIMON?

• By inputting the feature vectors to a supervised learning method (decision trees
and ensembles), the publication journal for each paper can be predicted.

This chapter is organized as follows. A description of the CP tensor decomposition
and how to compute it is provided in section 7.2. We discuss the properties of the data
and how it is represented as a sparse tensor in section 7.3. Numerical results are provided
in section 7.4. Related work is discussed in section 7.5. Conclusions and ideas for future
work are discussed in section 7.6.

7.2 Tensors and the CANDECOMP/PARAFAC
decomposition

This section provides a brief introduction to tensors and the CP tensor decomposition. For
a survey of tensors and their decompositions, see Kolda and Bader [2009].

7.2.1 Notation

Scalars are denoted by lowercase letters, e.g., c. Vectors are denoted by boldface lowercase
letters, e.g., v. The ith entry of v is denoted by v(i). Matrices are denoted by boldface
capital letters, e.g., A. The jth column of A is denoted by A(:, j) and element (i, j) by
A(i, j). Tensors (i.e., N -way arrays) are denoted by boldface Euler script letters, e.g., X.
Element (i, j, k) of a third-order tensor X is denoted by X(i, j, k). The kth frontal slice of
a three-way tensor is denoted by X(:, :, k); see Figure 7.1.
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7.2.2 Vector and matrix preliminaries
The symbol ⊗ denotes the Kronecker product of vectors; for example,

x = a⊗ b ⇔ x(`) = a(i)b(j)
where ` = j + (i− 1)(J) for all 1 ≤ i ≤ I, 1 ≤ j ≤ J.

This is a special case of the Kronecker product of matrices.
The symbol .∗ denotes the Hadamard matrix product. This is the elementwise prod-

uct of two matrices of the same size.
The symbol � denotes the Khatri-Rao product (or columnwise Kronecker product)

of two matrices [Smilde et al. 2004]. For example, let A ∈ RI×K and B ∈ RJ×K . Then,

A�B =
[
A(:, 1)⊗B(:, 1) A(:, 2)⊗B(:, 2) · · · A(:,K)⊗B(:,K)

]
is a matrix of size (IJ)×K.

7.2.3 Tensor preliminaries
The norm of a tensor is given by the square root of the sum of the squares of all its elements,
i.e., for a tensor X of size I × J ×K,

‖X ‖2 ≡
I∑
i=1

J∑
j=1

K∑
k=1

X(i, j, k)2

This is the higher-order analog of the Frobenius matrix norm.
The symbol ◦ denotes the outer product of vectors. For example, let a ∈ RI , b ∈ RJ ,

c ∈ RK . Then

X = a ◦ b ◦ c ⇔ X(i, j, k) = a(i)b(j)c(k)
for all 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K

A rank-one tensor is a tensor that can be written as the outer product of vectors. For
λ ∈ RR, A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R, the Kruskal operator [Kolda 2006]
denotes a sum of rank-one tenors:

Jλ; A,B,CK ≡
R∑
r=1

λ(r) A(:, r) ◦B(:, r) ◦C(:, r) ∈ RI×J×K

If λ is a vector of ones, then JA,B,CK is used as shorthand.
Matricization, also known as unfolding or flattening, is the process of reordering

the elements of an N -way array into a matrix; in particular, the mode-n matricization of a
tensor X is denoted by X(n); see, e.g., Kolda [2006]. For a three-way tensor X ∈ RI×J×K ,
the mode-n unfoldings are defined as follows:

X(1)(i, p) = X(i, j, k) where p = j + (k − 1)(J), (7.1)
X(2)(j, p) = X(i, j, k) where p = i+ (k − 1)(I), (7.2)
X(3)(k, p) = X(i, j, k) where p = i+ (j − 1)(I). (7.3)
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7.2.4 The CANDECOMP/PARAFAC (CP) tensor decomposition
The CP decomposition, first proposed by Hitchcock [1927] and later rediscovered simul-
taneously by Carroll and Chang [1970] and Harshman [1970], is a higher-order analog of
the matrix singular value decomposition (SVD). It should not be confused with the Tucker
decomposition [Tucker 1966], a different higher-order analog of the SVD.

CP decomposes a tensor into a sum of rank-one tensors. Let X be a tensor of size
I × J ×K. A CP decomposition with R factors approximates the tensor X as

X ≈
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r) ≡ JA,B,CK

where A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R. The matrices A, B, and C are called the
component matrices. Figure 7.2 illustrates the decomposition.

X
≈ + + · · ·+

A (:, 2)A (:, 1) A (:, R)

B (:, 2)B (:, 1) B (:, R)

C(:, R)C(:, 2)C(:, 1)

Figure 7.2. CP decomposition.
Approximates a tensor by a sum of rank-one factors.

It is useful to normalize the columns of the matrices A, B, and C to length one and
rewrite the CP decomposition as:

X ≈
R∑
r=1

λ(r) A(:, r) ◦B(:, r) ◦C(:, r) ≡ Jλ ; A,B,CK

where λ ∈ RR. In contrast to the solution provided by the SVD, the factor matrices A, B,
and C do not have orthonormal columns [Kolda 2001, Kolda & Bader 2009].

Each rank-one factor, λ(r) A(:, r) ◦ B(:, r) ◦ C(:, r), represents a “community”
within the data; see section 7.4.1. The number of factors in the approximation, R, should
loosely reflect the number of communities in the data. Often some experimentation is
required to determine the most useful value of R.

7.2.5 CP-ALS algorithm
A common approach to fitting a CP decomposition is to use an alternating least-squares
(ALS) algorithm [Carroll & Chang 1970, Harshman 1970]; see also, [Tomasi 2006, Faber et al. 2003,
Tomasi & Bro 2006]. At each inner iteration, the CP-ALS algorithm solves for one com-
ponent matrix while holding the others fixed. For example, it solves for the matrix C when
A and B are fixed, i.e.,

min
C
‖X− JA,B,CK ‖ (7.4)
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In this case, λ is omitted because it will just be absorbed into the lengths of the columns of
C when the computation is complete. Equation 7.4 can be rewritten as a matrix problem
(see, e.g., [Smilde et al. 2004]):

min
C

∥∥∥X(3) −C (B�A)T
∥∥∥ (7.5)

Here X(3) is the mode-3 matricization or unfolding from Equation 7.3.
Solving this problem makes use of the pseudo-inverse of a Khatri-Rao product, given

by

(B�A)† =
((

BTB
)
. ∗
(
ATA

))†
(B�A)T

Note that only the pseudo-inverse of an R × R matrix needs to be calculated rather than
that of an IJ ×R matrix [Smilde et al. 2004].

The optimal C is the least squares solution to Equation 7.5:

C = X(3)

[
(B�A)T

]†
= X(3)(B�A)

((
BTB

)
. ∗
(
ATA

))†

which can be computed efficiently thanks to the properties of the Khatri-Rao product. The
other component matrices can be computed in an analogous fashion using mode-1 and
mode-2 matricizations of X in solving for A and B, respectively.

It is generally efficient to initialize the ALS algorithm with the leading R leading
eigenvectors of X(n)XT

(n) for the nth component matrix as long as the nth dimension of X

is at least as big as R; see, e.g., [Kolda & Bader 2009]. Otherwise, random initialization
can be used. Only two of the three initial matrices need to be computed since the other is
solved for in the first step. The CP-ALS algorithm is presented in Algorithm 7.1.

ALGORITHM 7.1. CP-ALS.
CP decomposition via an alternating least squares. X is a tensor of size I ×
J ×K, R > 0 is the desired number of factors in the decomposition, M > 0
is the maximum number of iterations to perform, and ε > 0 is the stopping
tolerance.
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CP-ALS (X, R,M, ε)
1 m = 0
2 A = R principal eigenvectors of X(1)XT

(1)

3 B = R principal eigenvectors of X(2)XT
(2)

4 repeat
5 m = m+ 1
6 C = X(3)(B�A)

((
BTB

)
. ∗
(
ATA

))†
7 Normalize columns of C to length 1
8 B = X(2)(C�A)

((
CTC

)
. ∗
(
ATA

))†
9 Normalize columns of B to length 1

10 A = X(1)(C�B)
((

CTC
)
. ∗
(
BTB

))†
11 Store column norms of A in λ and

normalize columns of A to length 1
12 until m > M or ‖ X− Jλ ; A,B,CK ‖ < ε
13 return λ ∈ RR ; A ∈ RI×R ; B ∈ RJ×R ; C ∈ RK×R

such that X ≈ Jλ ; A,B,CK

In the discussion that follows, Λ denotes the R×R diagonal matrix whose diagonal
is λ.

All computations were performed using the Tensor Toolbox for MATLAB [Bader & Kolda 2006,
Bader & Kolda 2007], which was appropriate because of its ability to handle large-scale,
sparse tensors.

7.3 Data
The data consist of publication metadata from eleven SIAM journals as well as SIAM
proceedings for the period 1999–2004. There are 5022 articles; the number of articles per
publication is shown in Table 7.1. The names of the journals used throughout this paper
are their ISI abbreviations1 and “SIAM PROC S” is used to indicate the proceedings.

7.3.1 Data as a tensor
The data are represented as an N × N × K tensor where N = 5022 is the number of
documents and K = 5 is the number of link types. The five link types are described below;
see also Figure 7.1.

(1) The first slice (X(:, :, 1)) represents abstract similarity, i.e., X(i, j, 1) is the co-
sine similarity of the abstracts for documents i and j. The Text to Matrix Generator (TMG)
v2.0 [Zeimpekis & Gallopoulos 2006] was used to generate a term-document matrix, T.
All words appearing on the default TMG stopword list as well as words starting with a
number were removed. The matrix was weighted using term frequency and inverse docu-
ment frequency local and global weightings (tf.idf); this means that

T(i, j) = fij log2(N/Ni),
1http://www.isiknowledge.com/

http://www.isiknowledge.com/
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Table 7.1. SIAM publications.
Names of the SIAM publications along with the number of articles of each
used as data for the experiments.

Journal Name Articles
SIAM J APPL DYN SYST 32
SIAM J APPL MATH 548
SIAM J COMPUT 540
SIAM J CONTROL OPTIM 577
SIAM J DISCRETE MATH 260
SIAM J MATH ANAL 420
SIAM J MATRIX ANAL A 423
SIAM J NUMER ANAL 611
SIAM J OPTIMIZ 344
SIAM J SCI COMPUT 656
SIAM PROC S 469
SIAM REV 142

where fij is the frequency of term i in document j and Ni is the number of documents
that term i appears in. Each column of T is normalized to length one (for cosine scores).
Finally,

X(:, :, 1) = TTT.

Because they are cosine scores, all are in the range [0, 1]. In order to sparsify the slice, only
scores greater than 0.2 (chosen heuristically to reduce the total number of nonzeros in all
three text similarity slices to approximately 250,000) are retained.

(2) The second slice (X(:, :, 2)) represents title similarity, i.e., X(i, j, 2) is the cosine
similarity of the titles for documents i and j. It is computed in the same manner as the
abstract similarity slice.

(3) The third slice (X(:, :, 3)) represents author-supplied keyword similarity, i.e.,
X(i, j, 3) is the cosine similarity of the keywords for documents i and j. It is computed in
the same manner as the abstract similarity slice.

(4) The fourth slice (X(:, :, 4)) represents author similarity, i.e., X(i, j, 4) is the sim-
ilarity of the authors for documents i and j. It is computed as follows. Let W be the
author-document matrix such that

W(i, j) =

{
1/
√
Mj if author i wrote document j,

0 otherwise,

where Mj is the number of authors for document j. Then,

X(:, :, 4) = WTW.

(5) The fifth slice (X(:, :, 5)) represents citation information, i.e.,

X(i, j, 5) =

{
2 if document i cites document j,
0 otherwise.
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For this document collection, a weight of 2 was chosen heuristically so that the overall slice
weight (i.e., the sum of all the entries in X(:, :, k), see Table 7.3) would not be too small
relative to the other slices. The interpretation is that there are relatively few connections in
this slice, but each citation connection indicates a strong connection. In future work, we
would like to consider less ad hoc ways of determining the value for citation links.

Each slice is an adjacency matrix of a particular graph. The first four slices are sym-
metric and correspond to undirected graphs; the fifth slice is asymmetric and corresponds
to a directed graph. These graphs can be combined into a multi-link graph and a corre-
sponding tensor representation since they are all on the same set of nodes.

These choices for link types are examples of what can be done—many other choices
are possible. For instance, asymmetric similarity weights are an option; e.g., if document
i is a subset of document j, the measure might say that document i is very similar to
document j, but document j is not so similar to document i. Other symmetric measures
include co-citation or co-publication in the same journal.

7.3.2 Quantitative measurements on the data

Table 7.2 shows overall statistics on the data set. Note that some of the documents in this
data set have empty titles, abstracts, or keywords; the averages shown in the table are not
adjusted for the lack of data for those documents. Recall that Table 7.1 shows the number
of articles per journal. In Table 7.2, the citations are counted only when both articles are in
the data set and reflect the number of citations from each article. The maximum citations
to a single article is 15.

Table 7.2. SIAM journal characteristics.
Characteristics of the SIAM journal and proceedings data (5022 documents in
total).

Total in Per Document
Collection Average Maximum

Unique terms 16617 148.32 831
abstracts 15752 128.06 802
titles 5164 10.16 33
keywords 5248 10.10 40

Authors 6891 2.19 13
Citations (within collection) 2659 0.53 12

Table 7.3 shows the number of nonzero entries and the sums of the entries for each
slice. The text similarity slices (k = 1, 2, 3) have large numbers of nonzeros but low
average values, the author similarity slice has few nonzeros but a higher average value, and
the citation slice has the fewest nonzeros but all values are equal to 2.
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Table 7.3. SIAM journal tensors.
Characteristics of the tensor representation of the SIAM journal and proceed-
ings data.

Slice (k) Description Nonzeros
∑
i

∑
j X(i, j, k)

1 Abstract Similarity 28476 7695.28
2 Title Similarity 120236 33285.79
3 Keyword Similarity 115412 16201.85
4 Author Similarity 16460 8027.46
5 Citation 2659 5318.00

7.4 Numerical results
The results use a CP decomposition of the data tensor X ∈ RN×N×K :

X ≈ Jλ ; A,B,CK

where λ ∈ RR, A,B ∈ RN×R, and C ∈ RK×R. Using R = 30 factors worked well for
the experiments and is the default value unless otherwise noted.

7.4.1 Community identification

The rank-one CP factors (see Figure 7.2) reveal communities within the data. The largest
entries for the vectors in each factor

(A(:, r),B(:, r),C(:, r))

correspond to interlinked entries in the data. For the rth factor, high-scoring nodes in
A(:, r) are connected to high-scoring nodes in B(:, r) with the high-scoring link types in
C(:, r). Recall that the fifth link type, representing citations, is asymmetric; when that link
type scores high in C(:, r), then the highest-scoring nodes in A(:, r) can be thought of as
papers that cite the highest-scoring nodes in B(:, r).

For example, consider the first factor (r = 1). The link scores from C(:, 1) are
shown in Table 7.4. Title and keyword similarities are strongest. In fact, the top three link
types are based on text similarity and so are symmetric. Therefore, it is no surprise that the
highest-scoring nodes in A(:, 1) and B(:, 1), also shown in Table 7.4, are nearly identical.
This community is related primarily by text similarity and is about the topic “conservation
laws.”

On the other hand, the tenth factor (r = 10) has citation as the dominant link type; see
Table 7.5. Citation links are asymmetric, so the highest scoring nodes in A(:, 10) and B(:
, 10) are not the same. This is a community that is linked primarily because the high-scoring
papers in A(:, 10) cite the high-scoring papers in B(:, 10). The topic of this community is
“preconditioning,” though the third paper in B(:, 10) is not about preconditioning directly
but rather a graph technique that can be used by preconditioners—that is why it is on the
“cited” side.
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Table 7.4. First community in CP decomposition.
Community corresponding to the first factor (r = 1) of the CP tensor decom-
position with R = 30 factors.

Link scores in C(:, 1)
Score Link Type
0.95 Title Similarity
0.28 Keyword Similarity
0.07 Abstract Similarity
0.06 Citation
0.06 Author Similarity

Paper node scores in A(:, 1) (top 10)
Score Title
0.18 On the boundary control of systems of conservation laws
0.17 On stability of conservation laws
0.16 Two a posteriori error estimates for one-dimensional scalar conservation laws
0.16 A free boundary problem for scalar conservation laws
0.15 Convergence of SPH method for scalar nonlinear conservation laws
0.15 Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic . . .
0.15 High-order central schemes for hyperbolic systems of conservation laws
0.15 Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws

Paper node scores in B(:, 1) (top 10)
Score Title
0.18 On the boundary control of systems of conservation laws
0.18 On stability of conservation laws
0.16 Two a posteriori error estimates for one-dimensional scalar conservation laws
0.16 A free boundary problem for scalar conservation laws
0.16 Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic . . .
0.16 Convergence of SPH method for scalar nonlinear conservation laws
0.15 Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws
0.14 High-order central schemes for hyperbolic systems of conservation laws

The choice to have symmetric or asymmetric connections affects the interpretation of
the CP model. In this case, the tensor has four symmetric slices and one asymmetric slice. If
all of the slices were symmetric, then this would be a special case of the CP decomposition
called the INDSCAL decomposition [Carroll & Chang 1970] where A = B. In related
work, Selee et al. [2007] have investigated this situation.

7.4.2 Latent document similarity

The CP component matrices A and B provide latent representations (i.e., feature vectors)
for each document node. These feature vectors can, in turn, be used to compute document
similarity scores inclusive of text, authorship, and citations. Since there are two applicable
component matrices, A or B or some combination can be used. For example,

S =
1
2
AAT +

1
2
BBT. (7.6)

http://dx.doi.org/10.1137/S0363012901392529
http://dx.doi.org/10.1137/S0036141097322479
http://dx.doi.org/10.1137/S0036142999350383
http://dx.doi.org/10.1137/S0036141097325307
http://dx.doi.org/10.1137/S0036142996307119
http://dx.doi.org/10.1137/S1064827501389084
http://dx.doi.org/10.1137/S1064827597324998
http://dx.doi.org/10.1137/S003614290138437X
http://dx.doi.org/10.1137/S0363012901392529
http://dx.doi.org/10.1137/S0036141097322479
http://dx.doi.org/10.1137/S0036142999350383
http://dx.doi.org/10.1137/S0036141097325307
http://dx.doi.org/10.1137/S1064827501389084
http://dx.doi.org/10.1137/S0036142996307119
http://dx.doi.org/10.1137/S003614290138437X
http://dx.doi.org/10.1137/S1064827597324998
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Table 7.5. Tenth community in CP decomposition.
Community corresponding to the tenth factor (r = 10) of the CP tensor de-
composition with R = 30 factors.

Link scores in C(:, 10)
Score Link Type
0.96 Citation
0.19 AuthorSim
0.16 TitleSim
0.10 KeywordSim
0.06 AbstractSim

Paper node scores in A(:, 10) (top 10)
Score Title
0.36 Multiresolution approximate inverse preconditioners
0.20 Preconditioning highly indefinite and nonsymmetric matrices
0.16 A factored approximate inverse preconditioner with pivoting
0.16 On two variants of an algebraic wavelet preconditioner
0.14 A robust and efficient ILU that incorporates the growth of the inverse triangular factors
0.11 An algebraic multilevel multigraph algorithm
0.11 On algorithms for permuting large entries to the diagonal of a sparse matrix
0.11 Preconditioning sparse nonsymmetric linear systems with the Sherman-Morrison formula

Paper node scores in B(:, 10) (top 10)
Score Title
0.27 Ordering anisotropy and factored sparse approximate inverses
0.25 Robust approximate inverse preconditioning for the conjugate gradient method
0.23 A fast and high-quality multilevel scheme for partitioning irregular graphs
0.20 Orderings for factorized sparse approximate inverse preconditioners
0.19 The design and use of algorithms for permuting large entries to the diagonal of . . .
0.17 BILUM Block versions of multielimination and multilevel ILU preconditioner . . .
0.16 Orderings for incomplete factorization preconditioning of nonsymmetric problems
0.15 Preconditioning highly indefinite and nonsymmetric matrices

Here S is an N ×N similarity matrix where the similarity for documents i and j is given
by S(i, j).

It may also be desirable to incorporate Λ, e.g.,

S =
1
2
AΛAT +

1
2
BΛBT.

This issue is reminiscent of the choice facing users of latent semantic indexing (LSI)
[Dumais et al. 1988] which uses the SVD of a term-document matrix, producing term and
document matrices. In LSI, there is a choice of how to use the diagonal scaling for the
queries and comparisons [Berry et al. 1995].

As an example of how these similarity measures can be used, consider the paper Link
analysis: Hubs and authorities on the World Wide Web by Ding et al., which presents an
analysis of an algorithm for web graph link analysis. Table 7.6 shows the most similar
articles to this paper based on 7.6 for two different CP decompositions with R = 10 and
R = 30 factors. In the R = 10 case, the results are not very good because the “most simi-

http://dx.doi.org/10.1137/S1064827500373784
http://dx.doi.org/10.1137/S1064827599361308
http://dx.doi.org/10.1137/S0895479800372122
http://dx.doi.org/10.1137/S1064827501391436
http://dx.doi.org/10.1137/S1064827502403411
http://dx.doi.org/10.1137/S1064827500381045
http://dx.doi.org/10.1137/S0895479899358443
http://dx.doi.org/10.1137/S1064827502407524
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lar” papers include several papers on interior point methods that are not related. The results
for R = 30 are all focused on graphs and are therefore related. Observe that there is also a
big difference in the magnitude of the similarity scores in the two different cases. This ex-
ample illustrates that, just as with LSI, choosing the number of factors of the approximation
(R) is heuristic and affects the similarity scores.

Table 7.6. Articles similar to Link Analysis . . . .
Comparison of most similar articles to Link Analysis: Hubs and Authorities on
the World Wide Web using different numbers of factors in the CP decomposi-
tion.

R = 10
Score Title
0.000079 Ordering anisotropy and factored sparse approximate inverses
0.000079 Robust approximate inverse preconditioning for the conjugate gradient method
0.000077 An interior point algorithm for large-scale nonlinear programming
0.000073 Primal-dual interior-point methods for semidefinite programming in finite precision
0.000068 Some new search directions for primal-dual interior point methods in semidefinite . . .
0.000068 A fast and high-quality multilevel scheme for partitioning irregular graphs
0.000067 Reoptimization with the primal-dual interior point method
0.000065 Superlinear convergence of primal-dual interior point algorithms for nonlinear . . .
0.000064 A robust primal-dual interior-point algorithm for nonlinear programs
0.000063 Orderings for factorized sparse approximate inverse preconditioners

R = 30
Score Title
0.000563 Skip graphs
0.000356 Random lifts of graphs
0.000354 A fast and high-quality multilevel scheme for partitioning irregular graphs
0.000322 The minimum all-ones problem for trees
0.000306 Rankings of directed graphs
0.000295 Squarish k-d trees
0.000284 Finding the k-shortest paths
0.000276 On floor-plan of plane graphs
0.000275 1-Hyperbolic graphs
0.000269 Median graphs and triangle-free graphs

In the next section, feature vectors from the CP factors are combined to represent a
body of work.

7.4.3 Analyzing a body of work via centroids

Finding documents similar to a body of work may be useful in a literature search or in
finding other authors working in a given area. This subsection and the next discuss two
sets of experiments using centroids, corresponding to a term or an author, respectively, to
analyze a body of work.

Consider finding collections of articles containing a particular term (or phrase). All
articles containing the term in either the title, abstract, or keywords are identified and then
the centroids gA and gB are computed using the columns of the matrices A and B, re-
spectively, for the identified articles. The similarity scores for all documents to the body of
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work are then computed as

s =
1
2
AgA +

1
2
BgB . (7.7)

Consequently, s(i) is the similarity of the ith document to the centroid.
Table 7.7 shows the results of a search on the term “GMRES,” which is an iterative

method for solving linear systems. The table lists the top scoring documents using a com-
bination of matrices A and B. In order not to overemphasize the papers that cite many
of the papers about GMRES (i.e., using only the components from A) or those which are
most cited (i.e., using only the components from B), combining the two sets of scores takes
into account the content of the papers (i.e., abstracts, titles, and keywords) as an average
of these two extremes. Thus, the average scores result in a more balanced look at papers
about GMRES.

Similarly, centroids were used to analyze a body of work associated with a partic-
ular author. All of the articles written by an author were used to generate a centroid and
similarity score vector as above. Table 7.8 shows the most similar papers to the articles
written by V. KUMAR, a researcher who focuses on several research areas, including graph
analysis. In these ten articles in the table, only three papers (including the two authored
by V. KUMAR) are explicitly linked to V. KUMAR by co-authorship or citations. Further-
more, several papers that are closely related to those written by V. KUMAR focused on
graph analysis, while some are not so obviously linked. Table 7.8 lists the authors as well
to illustrate that such results could be used as a starting point for finding authors related
to V. KUMAR that are not necessarily linked by co-authorship or citation. In this case, the
author W. P. TANG appears to be linked to V. KUMAR.

Analysis of centroids derived from tensor decompositions can be useful in under-
standing small collections of documents. For example, such analysis could be useful for
matching referees to papers. In this case, program committee chairs could create a centroid
for each member on a program committee, and work assignments could be expedited by
automatically matching articles to the appropriate experts.

As a segue to the next section, note that finding a set of documents associated with a
particular author is not always straightforward. In fact, in the example above, there is also
an author named V. S. A. KUMAR, and it is not clear from article titles alone that this author
is not the same one as V. KUMAR. The next section discusses the use of the feature vectors
produced by tensor decompositions for solving this problem of author disambiguation.

7.4.4 Author disambiguation
A challenging problem in working with publication data is determining whether two au-
thors are in fact a single author using multiple aliases. Such problems are often caused by
incomplete or incorrect data or varying naming conventions for authors used by different
publications (e.g., J. R. SMITH versus J. SMITH). In the SIAM articles, there are many
instances where two or more authors share the same last name and at least the same first
initial, e.g., V. TORCZON and V. J. TORCZON. In these cases, the goal is to determine
which names refer to the same person.

The procedure for solving this author disambiguation problem works as follows. For
each author name of interest, we extract all the columns from the matrix B corresponding
to the articles written by that author name. Recall that the matrix B comes from theR = 30
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Table 7.7. Articles similar to GMRES.
Articles similar to the centroid of articles containing the term GMRES using
the component matrices of a CP tensor decomposition to compute similarity
scores.

Highest scoring nodes using 1
2
AgA + 1

2
BgB

Score Title
0.0134 FQMR A flexible quasi-minimal residual method with inexact . . .
0.0130 Flexible inner-outer Krylov subspace methods
0.0114 Adaptively preconditioned GMRES algorithms
0.0112 Truncation strategies for optimal Krylov subspace methods
0.0093 Theory of inexact Krylov subspace methods and applications to . . .
0.0086 Inexact preconditioned conjugate gradient method with inner-outer iteration
0.0085 Flexible conjugate gradients
0.0078 GMRES with deflated restarting
0.0065 A case for a biorthogonal Jacobi-Davidson method Restarting and . . .
0.0062 On the convergence of restarted Krylov subspace methods

Highest scoring nodes using AgA

Score
AgA BgB Title
0.0240 0.0019 Flexible inner-outer Krylov subspace methods
0.0185 0.0082 FQMR A flexible quasi-minimal residual method with inexact . . .
0.0169 0.0017 Theory of inexact Krylov subspace methods and applications to . . .
0.0132 0.0024 GMRES with deflated restarting
0.0127 0.0003 A case for a biorthogonal Jacobi-Davidson method Restarting and . . .
0.0107 0.0010 A class of spectral two-level preconditioners
0.0076 0.0011 An augmented conjugate gradient method for solving consecutive . . .

Highest scoring nodes using BgB

Score
BgB AgA Title
0.0217 0.0011 Adaptively preconditioned GMRES algorithms
0.0158 0.0014 Inexact preconditioned conjugate gradient method with inner-outer iteration
0.0149 0.0074 Truncation strategies for optimal Krylov subspace methods
0.0113 0.0056 Flexible conjugate gradients
0.0082 0.0185 FQMR A flexible quasi-minimal residual method with inexact . . .
0.0080 0.0007 Linear algebra methods in a mixed approximation of magnetostatic problems
0.0063 0.0060 On the convergence of restarted Krylov subspace methods

CP decomposition. Because of the directional citation links in X(:, :, 5), using the matrix
B slightly favors author names that are co-cited (i.e., their papers are cited together in
papers), whereas using A would have slightly favored author names that co-cite (i.e., their
papers cite the same papers). The centroid of those columns from B is used to represent the
author name. Two author names are compared by computing the cosine similarity of their
two centroids, resulting in a value between -1 (least similar) and 1 (most similar). In the
example above, the similarity score of the centroids for V. TORCZON and V. J. TORCZON
is 0.98, and thus there is high confidence that these names both refer to the same person
(verified by manual inspection of the articles).

As an example use of author disambiguation, the following experiment was per-
formed. (i) The top 40 author names of papers in the data set were selected, i.e., those
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Table 7.8. Similarity to V. KUMAR.
Papers similar to those by V. KUMAR using a rank R = 30 CP tensor decom-
position.

Score Authors Title
0.0645 Karypis G, Kumar V A Fast and high-quality multilevel scheme for partitioning . . .
0.0192 Bank RE, Smith RK The incomplete factorization multigraph algorithm
0.0149 Tang WP, Wan WL Sparse approximate inverse smoother for multigrid
0.0115 Chan TF, Smith B, Wan WL An energy-minimizing interpolation for robust methods . . .
0.0114 Henson VE, Vassilevski PS Element-free AMGe General algorithms for computing . . .
0.0108 Hendrickson B, Rothberg E Improving the Run-time and Quality of Nested Dissection . . .
0.0092 Karypis G, Kumar V Parallel multilevel k-way partitioning scheme for irregular . . .
0.0091 Tang WP Toward an effective sparse approximate inverse preconditioner
0.0085 Saad Y, Zhang J BILUM Block versions of multielimination and multilevel . . .
0.0080 Bridson B, Tang WP A structural diagnosis of some IC orderings

with the most papers. (ii) For each author name in the top 40, all papers in the full docu-
ment collection with any name sharing the same first initial and last name were retrieved.
(iii) Next the centroids for each author name as in section 7.4.3 were computed. (iv) The
combined similarity scores using the formula in 7.7 were calculated for all papers of author
names sharing the same first initial and last name. (v) Finally, the resulting scores were
compared to manually performed checks to see which matches are correct.

According to the above criteria, there are a total of 15 pairs of names to disambiguate.
Table 7.9 shows all the pairs and whether or not each is a correct match, which was deter-
mined manually.

Table 7.9. Author disambiguation.
Author name pairs to be disambiguated.

Pair Name 1 Name 2 Same Person?
1 T. CHAN T. F. CHAN Yes
2 T. CHAN T. M. CHAN No
3 T. F. CHAN T. M. CHAN No
4 T. MANTEUFFEL T. A. MANTEUFFEL Yes
5 S. MCCORMICK S. F. MCCORMICK Yes
6 G. GOLUB G. H. GOLUB Yes
7 X. L. ZHOU X. Y. ZHOU No
8 R. EWING R. E. EWING Yes
9 S. KIM S. C. KIM No
10 S. KIM S. D. KIM Yes
11 S. KIM S. J. KIM No
12 S. C. KIM S. D. KIM No
13 S. C. KIM S. J. KIM No
14 S. D. KIM S. J. KIM No
15 J. SHEN J. H. SHEN Yes

Figure 7.3 presents plots of the similarity scores for these 15 pairs of author names
using CP decompositions with R = 15, 20, 25, 30. The scores denoted by + in the figure
are those name pairs that refer to the same person, whereas those pairs denoted by ◦ refer

http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827597319520
http://dx.doi.org/10.1137/S0895479899339342
http://dx.doi.org/10.1137/S1064827598334277
http://dx.doi.org/10.1137/S1064827500372997
http://dx.doi.org/10.1137/S1064827596300656
http://dx.doi.org/10.1137/S0036144598334138
http://dx.doi.org/10.1137/S0895479897320071
http://dx.doi.org/10.1137/S106482759732753X
http://dx.doi.org/10.1137/S1064827599353841
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to different people. Ideally, there will be a distinct cutoff between correct and incorrect
matches. The figure shows that, in general, most correct matches have higher scores than
the incorrect ones. However, there are several instances where there is not a clear sepa-
ration between pairs in the two sets—e.g., pairs 8, 13, and 15 in Figure 7.3(a). The CP
decomposition with R = 20 clearly separates the correct and incorrect matches. Future
work in this area will focus on determining if there is an optimal value for R for the task of
predicting cutoff values for separating correct and incorrect matches.
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Figure 7.3. Disambiguation scores.
Author disambiguation scores for various CP tensor decompositions (+ = cor-
rect; ◦ = incorrect).

Table 7.10 shows how correctly disambiguating authors can make a difference in
publication counts. The left column shows the top 20 authors before disambiguation, and
the right columns shows the result afterward. There are several author names—T. F. CHAN,
T. A. MANTEUFFEL, S. F. MCCORMICK, G. H. GOLUB, and S. D. KIM—that move up
(some significantly) in the list when the ambiguous names are resolved correctly.

One complication that has not yet been addressed is that two different people may be
associated with the same author name. This is particularly likely in the case that the name
has only a single initial and a common last name. Consider the name Z. WU—there are two
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Table 7.10. Disambiguation before and after.
Authors with most papers before and after disambiguation.

Before Disambuguation After Disambuguation
Papers Author Papers Author

17 Q. DU 17 Q. DU
15 K. KUNISCH 16 T. F. CHAN
15 U. ZWICK 16 T. A. MANTEUFFEL
14 T. F. CHAN 16 S. F. MCCORMICK
13 A. KLAR 15 K. KUNISCH
13 T. A. MANTEUFFEL 15 U. ZWICK
13 S. F. MCCORMICK 13 A. KLAR
13 R. MOTWANI 13 R. MOTWANI
12 G. H. GOLUB 13 G. H. GOLUB
12 M. Y. KAO 12 M. Y. KAO
12 S. MUTHUKRISHNAN 12 S. MUTHUKRISHNAN
12 D. PELEG 12 D. PELEG
11 H. AMMARI 12 S. D. KIM
11 N. J. HIGHAM 11 H. AMMARI
11 K. ITO 11 N. J. HIGHAM
11 H. KAPLAN 11 K. ITO
11 L. Q. QI 11 H. KAPLAN
11 A. SRINIVASAN 11 L. Q. QI
11 X. Y. ZHOU 11 A. SRINIVASAN
10 N. ALON 11 X. Y. ZHOU

papers in the collection with this author name and five others with author names with the
same first initial and a different second initial. Table 7.11 lists the papers by these authors
along with the full first name of the author, which was determined by manual inspection.

Two approaches for solving this name resolution problem are considered: treating Z.
WU as a single author and taking the centroid of the two papers and treating each paper
as separate. In Table 7.12(a), Z. WU, as the author of two papers, appears most similar
to author 3. Separating the articles of Z. WU and recomputing the scores provides much
stronger evidence that authors 1b and 3 are the same author, and that author 1a is most
likely not an alias for one of the other authors; see Table 7.12(b).

Table 7.11. Data used in disambiguating the author Z. WU.
ID Author Title(s)
1a Wu Z (Zhen) Fully coupled forward-backward stochastic differential equations and . . .
1b Wu Z (Zili) Sufficient conditions for error bounds
2 Wu ZJ (Zhijun) A fast newton algorithm for entropy maximization in phase determination
3 Wu ZL (Zili) First-order and second-order conditions for error bounds
3 Wu ZL (Zili) Weak sharp solutions of variational inequalities in Hilbert spaces
4 Wu ZN (Zi-Niu) Steady and unsteady shock waves on overlapping grids
4 Wu ZN (Zi-Niu) Efficient parallel algorithms for parabolic problems

Manual inspection of all the articles by this group of authors indicates that authors
1b and 3 are in fact the same person, ZILI WU, and that author 1a is not an alias of any
other author in this group. The verified full name of each author is listed in parentheses in

http://dx.doi.org/10.1137/S0363012996313549
http://dx.doi.org/10.1137/S1052623400371557
http://dx.doi.org/10.1137/S0036144500371737
http://dx.doi.org/10.1137/S1052623402412982
http://dx.doi.org/10.1137/S1052623403421486
http://dx.doi.org/10.1137/S1064827597318381
http://dx.doi.org/10.1137/S0036142900381710


7.4. Numerical results 103

Table 7.12. Disambiguation of author Z. WU.

1 2 3 4
1 1.00 0.18 0.79 0.03
2 1.00 0.06 0.06
3 1.00 0.01
4 1.00

(a) Combination of all ambiguous authors

1a 1b 2 3 4
1a 1.00 0.01 0.21 0.03 0.07
1b 1.00 0.09 0.90 0.00
2 1.00 0.06 0.06
3 1.00 0.01
4 1.00

(b) Separation of all ambiguous authors

Table 7.11.
The experiments and results presented in this section suggest several ways that tensor

decompositions can be used for resolving ambiguity in author names. In particular, the use
of centroids for characterizing a body of work associated with an author shows promise for
solving this problem. In the next set of experiments, though, it can be observed that the
utility of centroids may be limited to small, cohesive collections, as they fail to produce
useful results for the problem of predicting which journal an article may appear in.

7.4.5 Journal prediction via ensembles of tree classifiers

Another analysis approach, supervised machine learning with the feature vectors obtained
in section 7.4.2, may be used to predict the journal that a given paper is published in.

The approach from section 7.4.3 of considering the centroid of a body of work does
not yield useful results in the case of journals because the centroids are not sufficiently
distinct. Therefore, classifiers trained on subsets of the data are used to predict the journals
in which the articles not included in those training sets are published. The feature vectors
were based on the matrix A from a CP decomposition with R = 30 components. Thus,
each document is represented by a length-30 feature vector, and the journal in which it is
published is used as the label value, i.e., the classification. The 5022 labeled feature vectors
were split into ten disjoint partitions, stratified so that the relative proportion of each jour-
nal’s papers remained constant across the partitions. Ten-fold cross validation was used,
meaning that each one of the ten partitions (10% of the data) was used once as testing data
and the remaining nine partitions (90% of the data) were used to train the classifier. This
computation was done using OpenDT [Banfield et al. 2004] to create bagged ensembles
[Dietterich 2000] of C4.5 decision trees. The ensemble size was 100; larger ensembles did
not improve performance.

Table 7.13 provides an overview of the results giving, for each journal, its identi-
fication number, its size relative to the entire collection, the percentage of its articles that
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were correctly classified, and the journal that it was most often mislabeled as and how often
that occurred. For instance, articles in journal 2 make up 11% of the total collection, are
correctly identified 58% of the time, and are confused with journal 6 most often (10% of
the time). The overall “confusion matrix” is given in Table 7.14; this matrix is obtained by
combining the confusion matrices generated for each of the ten folds.

Table 7.13. Summary journal prediction results.
ID Journal Name Size Correct Mislabeled as
1 SIAM J APPL DYN SYST 1% 0% 2 (44%)
2 SIAM J APPL MATH 11% 58% 6 (10%)
3 SIAM J COMPUT 11% 56% 11 (20%)
4 SIAM J CONTROL OPTIM 11% 60% 2 (10%)
5 SIAM J DISCRETE MATH 5% 15% 3 (47%)
6 SIAM J MATH ANAL 8% 26% 2 (29%)
7 SIAM J MATRIX ANAL A 8% 56% 10 (19%)
8 SIAM J NUMER ANAL 12% 50% 10 (16%)
9 SIAM J OPTIMIZ 7% 66% 4 (16%)

10 SIAM J SCI COMPUT 13% 36% 8 (21%)
11 SIAM PROC S 9% 32% 3 (38%)
12 SIAM REV 3% 5% 2 (34%)

Table 7.14. Predictions of publication.
Confusion matrix of predictions of publication of articles in the different SIAM
publications. A classifier based on bagging and using decision trees as weak
learners was used in this experiment. The bold entries are correct predictions.

Predicted Journal
1 2 3 4 5 6 7 8 9 10 11 12

1 0 14 4 1 1 4 0 3 1 1 2 1
2 1 318 19 46 3 54 13 31 7 41 12 3
3 0 29 303 24 29 5 15 8 7 10 109 1
4 0 57 21 346 2 34 20 12 51 22 11 1
5 0 12 122 9 40 4 15 2 1 2 53 0
6 0 120 19 56 1 108 15 58 3 34 5 1
7 0 23 11 22 5 8 235 18 18 81 2 0
8 0 56 13 47 0 37 37 304 13 98 5 1
9 0 10 19 55 1 4 10 5 228 1 10 1

10 0 77 7 32 0 36 98 135 23 237 7 4
11 0 37 176 21 34 12 9 8 7 13 149 3
12 1 48 13 12 2 13 16 6 6 10 8 7

Figure 7.4 shows a graphical representation of the confusion matrix. Each journal is
represented as a node, and the size of the node corresponds to the percentage of its articles
that were correctly labeled (0-66%). There is a directed edge from journal i to journal j
if journal i’s articles were mislabeled as article j. A Barnes-Hut forced directed method
(using the weighted edges) was used to determine the positions of the nodes [Beyer 2007].
Only those edges corresponding to mislabeling percentages of 5% or higher are actually
shown in the image (though all were used for the layout); the thicker the edge, the greater
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Figure 7.4. Journals linked by mislabeling.

the proportion of mislabeled articles.
The automatic layout generated by the Barnes-Hut algorithm visually yields four

clusters, and the nodes in Figure 7.4 are color-coded according to their cluster labels. These
journals along with their descriptions are presented in Table 7.15, and they are clearly clus-
tered by overlap in topics. Observe that, for example, the scope of SIAM J COMPUT (3)
includes everything in the scope of SIAM J DISCRETE MATH (5), so it is not surprising
that many of the latter’s articles are misidentified as the former. In cases where there is little
overlap in the stated scope, there seems to be less confusion. For instance, articles from the
SIAM J OPTIMIZ (9) are correctly labeled 66% of the time and the only other journal it is
confused with more than 5% of the time is the other optimization journal represented in the
collection: SIAM J CONTROL OPTIM (4). Note that the SIAM J CONTROL OPTIM (4)
does include dynamical systems in its description and is, in fact, linked to the “dynamical
systems” cluster.

7.5 Related work
7.5.1 Analysis of publication data

Researchers look at publication data to understand the impact of individual authors and
who is collaborating with whom, to understand the type of information being published
and by which venues, and to extract “hot topics” and understand trends [Boyack 2004].

As an example of the interest in this problem, the 2003 KDD Cup challenge brought
together 57 research teams from around the world to focus on the analysis of publica-
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Table 7.15. Journal clusters.
Journals grouped by how they are generally confused, with descriptions.

ID Topic
Red-Colored Nodes: Dynamical Systems

2 SIAM J APPL MATH: scientific problems using methods that are of mathematical interest such as
asymptotic methods, bifurcation theory, dynamical systems theory, and probabilistic and statistical
methods

6 SIAM J MATH ANAL: partial differential equations, the calculus of variations, functional analysis,
approximation theory, harmonic or wavelet analysis, or dynamical systems; applications to natural
phenomena

1 SIAM J APPL DYN SYST: mathematical analysis and modeling of dynamical systems and its
application to the physical, engineering, life, and social sciences

12 SIAM REV: articles of broad interest
Green-Colored Nodes: Optimization

4 SIAM J CONTROL OPTIM: mathematics and applications of control theory and on those parts of
optimization theory concerned with the dynamical systems

9 SIAM J OPTIMIZ: theory and practice of optimization
Purple-Colored Nodes: Discrete Math & Computer Science

3 SIAM J COMPUT: mathematical and formal aspects of computer science and nonnumerical
computing

5 SIAM J DISCRETE MATH: combinatorics and graph theory, discrete optimization and operations
research, theoretical computer science, and coding and communication theory

11 SIAM PROC S: Conference proceedings including SIAM Data Mining, ACM-SIAM Symposium on
Discrete Algorithms, Conference on Numerical Aspects of Wave Propagation, etc.

Cyan-Colored Nodes: Numerical Analysis
7 SIAM J MATRIX ANAL A: matrix analysis and its applications
8 SIAM J NUMER ANAL: development and analysis of numerical methods including convergence of

algorithms, their accuracy, their stability, and their computational complexity
10 SIAM J SCI COMPUT: numerical methods and techniques for scientific computation

tion data for citation prediction (i.e., implicit link detection in a citation graph), cita-
tion graph creation, and usage estimation (downloads from a server of preprint articles)
[Gehrke et al. 2003]. The data were from the high-energy physics community (a portion of
the arXiv preprint server collection2). For this challenge, McGovern et al. [2003] looked
at a number of questions related to the analysis of publication data. Of particular relevance
to this paper, they found that clustering papers based only on text similarity did not yield
useful clusters. Instead, they applied spectral-based clustering to a citation graph where the
edges were weighted by the cosine similarity of the paper abstracts—combining citation
and text information into one graph. Additionally, for predicting in which journal an article
will be published, they used relational probability trees (see section 7.5.3).

In other work, Barábasi et al. [2002] consider the social network of scientific col-
laborations based on publication data, particularly the properties of the entire network and
its evolution over time. In their case, the data were from publications in mathematics and
neuroscience. The nodes correspond to authors and the links to co-authorship.

Hill and Provost [2003] use only citation information to predict authorship with an
accuracy of 45%. They create a profile on each author based on his/her citation history
(weighting older citations less). This profile can then be used to predict the authorship of

2http://www.arXiv.org/

http://www.arXiv.org/
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a paper where only the citation information is known but not the authors. They do not use
any text-based matching but observe that using such methods may improve accuracy.

Jo et al. [2007] use citation graphs to determine topics in a large-scale document
collection. For each term, the documents (nodes in the citation graph) are down-selected to
those containing a particular term. The interconnectivity of those nodes within the “term”
subgraph is used to determine whether or not it comprises a topic. The intuition of their
approach is that, if a term represents a topic, the documents containing that term will be
highly interconnected; otherwise, the links should be random. They applied their method to
citation data from the arXiv (papers in physics) and Citeseer3 (papers in computer science)
preprint server collections.

7.5.2 Higher-order analysis in data mining

Tensor decompositions such as CANDECOMP/PARAFAC (CP) [Carroll & Chang 1970,
Harshman 1970] and Tucker [Tucker 1966] (including HO-SVD [De Lathauwer et al. 2000]
as a special case) have been in use for several decades in psychometrics and chemometrics
and have recently become popular in signal processing, numerical analysis, neuroscience,
computer vision, and data mining. See Kolda and Bader [2009] for a comprehensive survey.

Recently, tensor decompositions have been applied to data-centric problems includ-
ing analysis of click-through data [Sun et al. 2005] and chatroom analysis [Acar et al. 2005,
Acar et al. 2006]. Liu et al. [2005] present a tensor space model which outperforms the
classical vector space model for the problem of classification of Internet newsgroups.
In the area of web hyperlink analysis, the CP decomposition has been used to extend
the well-known HITS method to incorporate anchor text information [Kolda et al. 2005,
Kolda & Bader 2006]. Bader et al. [2007a, 2007b] used tensors to analyze the communi-
cations in the Enron e-mail data set. Sun et al. [2006a, 2006b] dynamically update Tucker
models for detecting anomalies in network data. Tensors have also been used for multiway
clustering, a method for clustering entities of different types based on both entity attributes
as well as the connections between the different types of entities [Banerjee et al. 2007].

7.5.3 Other related work

Cohn and Hofmann [2001] develop a joint probability model that combines text and links,
with an application to categorizing web pages. Relational probability trees (RPTs) [Getoor et al. 2003,
Getoor & Diehl 2005] offer a technique for analyzing graphs with different link and node
types, with the goal of predicting node or link attributes.

For the problem of author disambiguation, addressed in this paper, Bekkerman and
McCallum [2005] have developed an approach called multiway distributional clustering
(MDC) that clusters data of several types (e.g., documents, words and authors) based on
interactions between the types. They use an instance of this method for disambiguation of
individuals appearing in pages on the web.

3http://citeseer.ist.psu.edu/

http://citeseer.ist.psu.edu/
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7.6 Conclusions and future work
Multiple similarities between documents in a collection are represented as a three-way
tensor (N ×N ×K), the tensor is decomposed using the CP-ALS algorithm, and relation-
ships between the documents are analyzed using the CP component matrices. How to best
choose the weights of the entries of the tensor is an open topic of research—the ones used
here were chosen heuristically.

Different factors from the CP decomposition are shown to emphasize different link
types; see section 7.4.1. Moreover, the highest-scoring components in each factor denote
an interrelated community. The component matrices (A and B) of the CP decomposition
can be used to derive feature vectors for latent similarity scores. However, the number of
components (R) of the CP decomposition can strongly influence the quality of the matches;
see section 7.4.2. The choice of the number of components (R) and exactly how to use the
component matrices are open questions, including how to combine these matrices, how to
weight or normalize the features, and whether or not to incorporate the factor weightings,
i.e., λ.

This brings us to two disadvantages of the CP model. First, the factor matrices are
not orthogonal, in contrast to the matrix SVD. A possible remedy for this is to instead con-
sider the TUCKER decomposition [Tucker 1966], which produces orthogonal component
matrices and, moreover, can have a different number of columns for each component ma-
trix; unfortunately, the Tucker decomposition is not unique and does not produce rank-one
components like CP. Second, the best decomposition with R components is not the same
as the first R factors of the optimal decomposition with S > R components, again in con-
trast to the SVD [Kolda 2001]. This means that we cannot determine the optimal R by
trial-and-error without great expense.

The centroids of feature vectors from the component matrices of the CP decompo-
sition can be used to represent a small body of work (e.g., all the papers with the phrase
“GMRES”) in order to find related works. As expected, the feature vectors from the differ-
ent component matrices produce noticeably different answers, either one of which may be
more or less useful in different contexts; see section 7.4.3. Combining these scores can be
used to provide a ranked list of relevant work, taking into account the most relevant items
from each of the component matrices.

A promising application of the similarity analysis is author disambiguation, where
centroids are compared to predict which authors with similar names are actually the same.
The technique is applied to the subset of authors with the most papers authored in the
entire data set and affects the counts for the most published authors; see section 7.4.4. In
future work, we will consider the appropriate choice of the number of components (R)
for disambiguation, identify how to choose the disambiguation similarity threshold, and
perform a comparison to other approaches.

Using the feature vectors, it is possible to predict which journal each article was
published in; see section 7.4.5. Though the accuracy was relatively low, closer inspection
of the data yielded clues as to why. For example, two of the publications were not focused
publications. Overall, the results revealed similarities between the different journals. In
future work, we will compare the results of using ensembles of decision trees to other
learning methods (e.g., k-nearest neighbors, perceptrons, and random forests).

We also plan to revisit the representation of the data on two fronts. First, we wish to
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add authors as nodes. Hendrickson [2007] observes that term-by-document matrices can be
expanded to be (term plus document)-by-(term plus document) matrices so that term-term
and document-document connections can be additionally encoded. Therefore, we intend
to use a (document plus author) dimension so that we can explicitly capture connections
between documents and authors as well as the implicit connections between authors, such
as colleagues, conference co-organizers, etc. Second, in order to make predictions or an-
alyze trends over time, we intend to incorporate temporal information using an additional
dimension for time.

Though the CP decomposition has indications of the importance of each link in the
communities it identifies (see section 7.4.1), we do not exploit this information in reporting
or computing similarities. As noted in [Ramakrishnan et al. 2005], understanding how two
entities are related is an important issue and a topic for future work.

The reasons that the spectral properties of adjacency matrices aid in clustering are
beginning to be better understood; see, e.g., [Brand & Huang 2003]. Similar analyses to
explain the utility of the CP model for higher-order data are needed.
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